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Abstract 

Availability of genomic sequences in public domain has spurred intense algorithmic developments for iden�fying protein coding regions (gene finding) and for establishing 
their func�ons. This in turn accelerated protein structure predic�on efforts, par�cularly relevant for proteins crucial to pathogens and those involved in disease condi�ons, 
to further enable structure-based drug design endeavours.  This modern drug discovery pathway (Genome -> Gene -> Protein -> Drug) in our hands became a set of so�ware 
suites collec�vely called ‘Dhanvantari’ which embodies Chemgenome, Bhageerath and Sanjeevini web-suites to traverse through the genome to drug pathway with entry 
along any point. While developing the above science and so�ware suites, our focus has been on energy, forcefield and molecular simula�on based methods which are referred 
to here as physico-chemical methods. AI/ML methods have literally stormed in during the last few years into these research areas making it almost difficult to ignore their 
strengths. The result is the emergence of integrated AI/ML and physico-chemical methods for improved accuracies and greater success rates in new molecule predic�ons 
against drug targets. This brief report sketches how these methods have evolved in our hands to help accelerate drug discovery. 
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1 The Genome to Drug Pathway 

 

Fig. 1. In silico drug discovery assembly line developed at SCFBio. Step 1 is for genome annota�on, finding protein coding genes here, step 2 for protein ter�ary structure 
predic�on, steps 3,4 and 5 which are part of Sanjeevini suite are for iden�fying lead compounds which are further processed through simula�ons and post facto binding free 
energy analyses to suggest candidate molecules for experimental tes�ng.  User can enter at any step in the above Dhanvantari pipeline. 

 



Over the past score and more years, we were focused on developing physico-chemical methods from Genome to Drug discovery [1-3] with entry at any step along the pathway 
as shown in Fig. 1. While this work was finding strong roots, remarkable progresses were made in the applica�ons of AI/ML in drug discovery in recent years. We trace the 
advancements in computer aided drug discovery with these dis�nct approaches in our Laboratory and how integra�on of these methods are yielding reliable predic�ons of 
drug-like candidate molecules for biomolecular targets.  

2 Gene Predic�on 

During the first few years of the century, several methods were proposed for gene finding. GLIMMER, GENSCAN, GENESCAN, GenomeThreader, GRAIL, Augustus, are a few to 
name [4-9]. An exhaus�ve list of annota�on so�ware is available in Ref. 10. These are typically based on higher order Markov models, hidden Markov models, patern 
recogni�on, discriminant analysis, neural networks, Fourier transforms and several other sophis�cated sta�s�cal and mathema�cal techniques mostly in nucleo�de sequence 
space.  A common problem encountered with these early methods was the lack of universality and heavy dependence on sparse experimental datasets for training [11]. It 
was clear that we needed to go beyond sequences into property space for achieving universality. This led us to develop Chemgenome based on forcefields [12] and molecular 
dynamics simula�on derived DNA energe�cs, focusing on universality [13,14]. The method was able to capture sensi�vity and specificity upto 90% independent of the species.  
While this was the case during early part of the century, most of the above men�oned gene finding methods, augmented with newer ML techniques and expanded 
experimental training sets, now deliver > 95% sensi�vity for any specific species, although universality is lacking. Our inspira�on to con�nue with physico-chemical methods 
for deciphering the language of DNA and its apparent success hinges on two important discoveries. One was the discovery of the conjugate rule [15] and the second was the 
observa�on that structural and energe�c features of DNA conveyed their func�onal des�ny [16-19]. While physico-chemical methods (PCM) with both energe�cs and 
structural informa�on superposed on sequence informa�on, promise broader applicability, the accuracies are s�ll hovering around 90%. Couple of areas where PCMs are 
leading are in promoter predic�on, and in intron-exon boundary detec�on wherein sequence level promiscuity is high. The ChemEXIN [20] sketched in Fig. 2 shows 
unprecedented accuracies in intron-exon boundary detec�on. We expect that PCM and ML combina�ons will get us to a Genome Reader very soon.   



 

 

Fig. 2. An illustra�on of ChemExin, an intron-exon boundary detec�on scheme with physico-chemical approach supplemented  with machine learning. The physico-chemical 
parameters obtained from MD simula�ons are used to train a 3D-Convolu�onal Neural Network (3D-CNN) model involving deep learning. This model outperforms the other 
state of the art tools across the three organisms studied. The parameter scores are: Sensi�vity = 93.1, Specificity = 91.9 for H.Sapiens; Sensi�vity = 80.4, Specificity = 79.4 for 
M.Musculus; and Sensi�vity = 91.9 and Specificity = 92.0 for C.elegans [20]. 



 

3 Protein Structure Predic�on 

We have developed an all atom energy based methodology named Bhageerath for ter�ary structure predic�on of small proteins and subsequently extended it to larger 
proteins by combining homology methods (BhageerathH) [21-23]. More than 100 research groups have also made significant contribu�ons to this area as chronicled in the 
biennial CASP experiments [24,25]. Some of the popular servers are Roseta, Quark, I-Tasser, Mul�com, In�old, Dis�ll, HHGG, Phyre, Floudas, Raptor, Pcons and so on. Full list 
is available at htps://predic�oncenter.org/. The overall accuracy, not long ago, however was around 30% in terms of less than 3 Å RMSD (root mean square devia�on) of 
predic�ons in rela�on to crystal structures.  This was the �me when ANNs, although not fully ready for protein ter�ary structure predic�on (PSP), were touching near 80% 
accuracy in secondary structure predic�on [26]. In came AI based Alphafold and its next version couple of years ago developed by DeepMind which took the PSP field by 
storm with near 100% accuracy for soluble proteins [27,28]. Interes�ngly, most successful PSP so�wares par�cipa�ng in CASP15 experiment, assimilated Alphafold codes into 
their algorithms. BhageerathH however, fielded forcefield and homology based models and encouragingly enough, 49 out of 94 structures predicted by BhageerathH were 
within 3 Å of Alphafold structures (Fig. 3). No�ng that the average size of the targets released in CASP15 was 478, the 52% accuracy by PCMs was good progress.  The accuracies 
reported are underes�mates since these are CASP targets with higher difficulty level in modelability [29]. Con�nuing with Bhageerath,  we conceived of crea�ng a  
computa�onal PDB [30] and did so for Pvax in 2018 comprising over 2205 structures of soluble proteins and 3664 structures of soluble proteins of PvP01 in 2020 [31, 32]. 
Soon enough in 2022-23, Alphafold created ter�ary structures of the en�re uniport protein sequence database available from htps://alphafold.ebi.ac.uk/. During our journey 
along the physico-chemical pathway, we were excited to discover that just four physico-chemical proper�es of amino acids not only explained the existence of the magic 
number 20 for naturally occurring amino acids, but also set very high water marks for homology modelling and func�on predic�on [33, 34]. We also discovered that higher 
order Ramachandran maps carried sufficient informa�on to build ter�ary structures [35]. Further analyses of the configura�onal space of proteins suggested, when higher 
order spa�al correla�ons of amino acid residue neighbours were included, that protein folding was a convergent problem as opposed to the then conven�onal wisdom [36]. 
Alphafold has now proved it. We were equally excited to discover that millions of proteins chronicled �ll date share a similar stoichiometry with very small standard devia�ons 
in their amino acid composi�ons which we called as the margin of life [37,38]. Equally interes�ng was the observa�on that there was a universality in the spa�al distribu�on 
of the C-alpha atoms for any pair of amino acids defying the no�on that preferen�al interac�ons among amino acid side chains dictated protein folding. This suggested to us 
a new view that inter-side chain interac�ons in proteins were offset by desolva�on effects and folding thus was dictated by shape considera�ons of side chains along the 
sequence and exclusion by solvent water. Much remains to be done with PCMs in the PSP area to further understand the mechanism of folding at a molecular level. In the 
area of PSP, it is needless to say that AI inspired Alphafold and its variants, as of now, are leading the way. 
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Fig. 3. A superposi�on of the ter�ary structures predicted by BhageerathH-Pro (blue) and Alphafold (red) for CASP15 targets:  (A) Target T1191 with 1770 residues (RMSD: 
0.97 Å) and (B) Target T1193 with 1297 residues (RMSD: 0.65 Å). 

4 Drug Design 

As a part of our efforts to develop a freely accessible, experimentally validated, complete drug discovery web-suite Sanjeevini [39-42] and par�cularly to facilitate a rapid 
screening of candidate molecules in the binding pocket of a target protein in search of good inhibitors, we developed an all atom binding energy based method for scoring 
named BAPPL [43] as an alterna�ve to the conven�onal molecular free energy simula�ons [44,45]. Given the small size of experimental data sets then, and fewer groups in 
the field, BAPPL performed reasonably well. A decade later, data size increased, groups have increased and this has led us to revisit BAPPL, augment with ML methods (random 
forest in par�cular) and create BAPPL+ which seemed to outperform several other similar u�li�es [46]. We however, con�nue to recommend the performance of molecular 
dynamics (MD) simula�ons on the protein-ligand docked complexes followed by BAPPL+ analyses of the binding energies as ensemble averages over the MD trajectories for 
more reliable results [47]. The atomic level modelling of protein-ligand interac�ons is feasible if the number of candidates is less than 100 or 1000 given today’s compute 
power. To scan large libraries such as a million compound library, against a target protein, in a mater of minutes, without actually docking, some novel strategies are required. 
We thus built a method (RASPD) based on a QSAR type equa�on in the space of physico-chemical proper�es lining the binding pocket of the target protein and the candidate 
molecules [48]. More recently, i.e. almost a decade later, we have introduced RASPD+ which incorporates several ML algorithms. eRF together with PCMs is seen to perform 
the best [49]. Fig. 4 illustrates the changing �mes for virtual screening. It is almost as if, integra�on of PCMs and MLs is the way to go for improved accuracies and especially 



for accelera�ng new molecule discovery u�lizing large libraries of small molecules. It may be noted that Sanjeevini protocols have already delivered experimentally validated 
low micromolar compounds against HAV [50], HBV [51,52]and CHIKV [53] infec�ons, breast cancer [54], Alzheimer’s [55] and malaria [56] and fungal infec�ons [57]. 

 

 

Fig. 4. A screen shot of the front-end of the RASPD+ web-server developed at SCFBio for a rapid virtual screening of small molecule libraries against a protein target (a million 
compounds in minutes!). The methodology searches for complementarity in the physico-chemical proper�es of the ac�ve site residues of protein targets and small molecules. 
User has the op�on to choose the scoring func�on trained with several models such as extremely random forest, deep neural network, linear support vector regression etc. 
[48,49]. RASPD+ is freely accessible at htp://www.sc�io-iitd.res.in/raspd+/. 

  



5 Conclusions 

Physico-chemical methods and molecular simula�ons have a long history in protein structure area and in computer aided drug discovery. They are rela�vely more recent in 
genome annota�on. AI/ML methods have been the mainstay for genome annota�on for more than two decades. However, these can significantly benefit with structural 
energe�c feature inclusion as men�oned in sec�on 2 above. Despite the emergence of Alphafold, work must go on with physico-chemical methods to arrive at unique na�ve 
structures from sequences as there is no subs�tute to PCMs for new knowledge genera�on as adverted to briefly in sec�on 3 above. There are many areas which have been 
impacted by AI/ML in CADD [58-63]. One area is toxicity. The chemistry and biology of toxicity remain a black box hindering the growth of PCMs although a few ideas and 
hypotheses prevail such as off target binding [64] and metabolism of xenobio�cs [65] etc.. This is where AI/ML can play a tremendous role [66-68] in curtailing the failure 
rates of promising candidates bringing down the cost and �me involved in drug discovery.  
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